用換元法求值域
y=2x+1+√(1-x)
設(shè)√(1-x) =u≧0,則1-x=u²,x=1-u²;
故y=2(1-u²)+1+u=-2u²+u+3=-2(u²-u/2)+3=-2[(u-1/4)²-1/16]+3=-2(u-1/4)²+25/8≦25/8;
當(dāng)u=1/4,即x=15/16時(shí)y獲得最大值25/8;故值域?yàn)?-∞,25/8];
y=2sin²x-3cosx-1
y=2(1-cos²x)-3cosx-1=-2cos²x-3cosx+1=-2[cos²x+(3/2)cosx]-1=-2[(cosx+3/4)²-9/16]-1
=-2(cosx+3/4)²+1/8≦1/8;當(dāng)cosx=1時(shí)y獲得最小值=-2(1+3/4)²+1/8=-48/8=-6
即該函數(shù)的值域?yàn)閇-6,1/8];
y=x+√(1-x²)
由1-x²≧0,得x²≦1,即定義域?yàn)椋?1≦x≦1;
可令x=sinu,則y=sinu+cosu=(√2)sin(u+π/4);故值域?yàn)閇-√2,√2].