m |
n |
m |
n |
由正弦定理可得(2sinC+sinB)cosA+sinAcosB=0,
即2sinCcosA+(sinBcosA+sinAcosB)=0,
整理可得sinC+2sinCcosA=0.
∵0<C<π,sinC>0,
∴cosA=-
1 |
2 |
∴A=
2π |
3 |
(2)由余弦定理,a2=b2+c2-2bccosA,
即16=b2+c2+bc≥3bc,
故bc≤
16 |
3 |
故△ABC的面積為S=
1 |
2 |
| ||
4 |
4
| ||
3 |
當(dāng)且僅當(dāng)b=c=
4
| ||
3 |
4
| ||
3 |
m |
n |
m |
n |
m |
n |
m |
n |
1 |
2 |
2π |
3 |
16 |
3 |
1 |
2 |
| ||
4 |
4
| ||
3 |
4
| ||
3 |
4
| ||
3 |