右邊=2?f(2)=2×(1+
1 |
2 |
(2)假設(shè)n=k時等式成立,即
k+f(1)+f(2)+…+f(k-1)=kf(k).
由已知條件可得f(k+1)=f(k)+
1 |
k+1 |
右邊=(k+1)?f(k+1)(先寫出右邊,便于左邊對照變形).
當(dāng)n=k+1時,左邊=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)
=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(湊成歸納假設(shè))
=kf(k)+1+f(k)(利用假設(shè))
=(k+1)?f(k)+1
=(k+1)?[f(k+1)-
1 |
k+1 |
=(k+1)?f(k+1)=右邊.
∴當(dāng)n=k+1時,等式也成立.
由(1)(2)可知,對一切n≥2的正整數(shù)等式都成立.