1 |
x?1 |
2a |
x2 |
x2?2ax+2a |
x2(x?1) |
設(shè)g(x)=x2-2ax+2a,△=4a2-8a=4a(a-2),
①當(dāng)△≤0,即0≤a≤2,g(x)≥0,
∴f′(x)≥0,f(x)在(1,+∞)上單調(diào)遞增.
②當(dāng)a<0時(shí),g(x)的對(duì)稱(chēng)軸為x=a,當(dāng)x>1時(shí),由二次函數(shù)的單調(diào)性可知g(x)>g(1)>0,
∴f′(x)>0,f(x)在(1,+∞)上單調(diào)遞增.
③當(dāng)a>2時(shí),設(shè)x1,x2(x1<x2)是方程x2-2ax+2a=0的兩個(gè)根,則x1=a?
a2?2a |
a2?2a |
當(dāng)1<x<x1或x>x2時(shí),f′(x)>0,f(x)在(1,x1),(x2,+∞)上是增函數(shù).
當(dāng)x1<x<x2時(shí),f′(x)<0,f(x)在(x1,x2)上是減函數(shù).
綜上可知:當(dāng)a≤2時(shí),f(x)在(1,+∞)上單調(diào)遞增;
當(dāng)a>2時(shí),f(x)的單調(diào)增區(qū)間為(1,x1),(x2,+∞),單調(diào)遞減區(qū)間為(x1,x2).
(2)
ln(x?1) |
x?2 |
a |
x |
1 |
x?2 |
2a |
x |
1 |
x?2 |
令h(x)=f(x)-a,由(1)知:
①當(dāng)a≤2時(shí),f(x)在(1,+∞)上是增函數(shù),所以h(x)在(1,+∞)是增函數(shù).
因?yàn)楫?dāng)1<x<2時(shí),h(x)<h(2)=0,∴(*)式成立;
當(dāng)x>2時(shí),h(x)>h(2)=0,∴(*)成立;
所以當(dāng)a≤2時(shí),(*)成立
②當(dāng)a>2時(shí),因?yàn)閒(x)在(x1,2)上是減函數(shù),所以h(x)在(x1,2)上是減函數(shù),所以當(dāng)x1<x<2時(shí),h(x)>h(2)=0,(*)不成立.
綜上可知,a的取值范圍為(-∞,2].