k |
2 |
∴f′(x)=
1 |
1+x |
kx2+(k?1)x |
1+x |
令g(x)=kx2+(k-1)x,k≥0,x>-1
(1)當(dāng)k=0時(shí),g(x)=-x
當(dāng)-1<x<0時(shí),g(x)>0,所以f′(x)>0,函數(shù)f(x)在(-1,0)上單調(diào)遞增,
當(dāng)x>0時(shí),g(x)<0,所以f′(x)<0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減,
(2)當(dāng)k≠0時(shí),g(x)=x[kx+(k-1)]
令g(x)=x[kx+(k-1)]=0,解得x=0,或x=
1 |
k |
①當(dāng)
1 |
k |
當(dāng)
1 |
k |
當(dāng)
1 |
k |
1 |
k |
當(dāng)x>0時(shí),g(x)>0,所以f′(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
②當(dāng)
1 |
k |
當(dāng)0<x<
1 |
k |
1 |
k |
當(dāng)x>
1 |
k |
1 |
k |
③當(dāng)k=1時(shí),g(x)≥0,所以f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,