∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
![](http://hiphotos.baidu.com/zhidao/pic/item/08f790529822720ec7f8a64d78cb0a46f21fab57.jpg)
∴△ADE∽△FBE,
∵點F是BC的中點,
∴BF=
1 |
2 |
1 |
2 |
∴
AE |
EF |
AD |
BF |
∴S△ABE=2a,
S△ADE |
S△FBE |
AD |
BF |
即
S△ADE |
a |
∴S△ADE=4a,
∴S△BCD=S△ABD=2a+4a=6a,
∴S四邊形CDEF=S△BCD-S△BEF=6a-a=5a,
∴△ABE與四邊形EFCD的面積之比為:2a:5a=2:5.
故選C.
1 |
3 |
2 |
3 |
2 |
5 |
3 |
5 |
1 |
2 |
1 |
2 |
AE |
EF |
AD |
BF |
S△ADE |
S△FBE |
AD |
BF |
S△ADE |
a |