![](http://hiphotos.baidu.com/zhidao/pic/item/908fa0ec08fa513d5ecaef683e6d55fbb2fbd920.jpg)
令z=0,可得直線x+my=0的斜率為-
1 |
m |
結(jié)合可行域可知當直線x+my=0與直線AC平行時,
線段AC上的任意一點都可使目標函數(shù)z=x+my取得最小值,
而直線AC的斜率為
1?3 |
3?1 |
所以-
1 |
m |
故選C.
增加網(wǎng)友的解法,相當巧妙值得體會!請看:
依題意,1+3m=5+2m<3+m,或1+3m=3+m<5+2m,或3+m=5+2m<1+3m
解得 m∈空集,或m=1,或m∈空集,
所以m=1,選C.
評析:此解法妙在理解了在邊界處取到最小值這個命題的內(nèi)蘊,區(qū)域的三個頂點中一定有兩個頂點的坐標是最優(yōu)解,故此兩點處函數(shù)值相等,小于第三個頂點處的目標函數(shù)值,本題略去了判斷最優(yōu)解取到位置的判斷,用三個不等式概括了三種情況,從而解出參數(shù)的范圍,此方法可以在此類求參數(shù)的題中推廣,具有一般性!