則當(dāng)x∈(2,+∞),f′(x)=
1 |
x |
1 |
x |
∴a≥(
1 |
x |
1 |
2 |
令g′(x)=ex-a=0,得x=ln a.
當(dāng)x<ln a時(shí),g′(x)<0;當(dāng)x>ln a時(shí),g′(x)>0.
又g(x)在(2,+∞)上有最小值,
所以ln a>2,即a>e2.
綜上,有a∈(e2,+∞).
(2)當(dāng)x∈(0,+∞),g′(x)=ex-a≥0恒成立,a≤(ex)min,∴a≤1
令f(x)=0,a=
lnx |
x |
lnx |
x |
1?lnx |
x2 |
令h′(x)=0,x=e
當(dāng)x∈(0,e),h′(x)>0,h(x)在(0,e)上單調(diào)遞增
當(dāng)x∈(e,+∞),h′(x)<0,h(x)在(e,+∞)上單調(diào)遞減,
∴h(x)的最大值為h(e)=
1 |
e |
h(x)的大致圖象如圖所示:
![](http://hiphotos.baidu.com/zhidao/pic/item/48540923dd54564eb69cadbbb0de9c82d0584fb2.jpg)
當(dāng)
1 |
e |
1 |
e |
1 |
e |