由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.
所以log2(an-1)=1+(n-1)×1=n,即an=2n+1.
(II)證明:因?yàn)?span>
1 |
an+1?an |
1 |
2n+1?2n |
1 |
2n |
所以
1 |
a2?a1 |
1 |
a3?a2 |
1 |
an+1?an |
1 |
21 |
1 |
22 |
1 |
23 |
1 |
2n |
| ||||||
1?
|
1 |
2n |
即得證.
1 |
a2?a1 |
1 |
a3?a2 |
1 |
an+1?an |
1 |
an+1?an |
1 |
2n+1?2n |
1 |
2n |
1 |
a2?a1 |
1 |
a3?a2 |
1 |
an+1?an |
1 |
21 |
1 |
22 |
1 |
23 |
1 |
2n |
| ||||||
1?
|
1 |
2n |