如圖,已知∠AOB=120°,OM平分∠AOB,將等邊三角形的一個(gè)頂點(diǎn)P放在射線OM上,兩邊分別與OA、OB(或其所在直線)交于點(diǎn)C、D.
![](http://hiphotos.baidu.com/zhidao/pic/item/b8389b504fc2d5622def3e5ce41190ef77c66c98.jpg)
(1)如圖①,當(dāng)三角形繞點(diǎn)P旋轉(zhuǎn)到PC⊥OA時(shí),證明:PC=PD.
(2)如圖②,當(dāng)三角形繞點(diǎn)P旋轉(zhuǎn)到PC與OA不垂直時(shí),線段PC和PD相等嗎?請(qǐng)說明理由.
(3)如圖③,當(dāng)三角形繞點(diǎn)P旋轉(zhuǎn)到PC與OA所在直線相交的位置時(shí),線段PC和PD相等嗎?直接寫出你的結(jié)論,不需證明.
(1)證明:∵OP平分∠AOB,PC⊥OA于C,
OM平分∠AOB,
∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,
∴PD⊥OB于D,
∴PC=PD.(角平分線上的點(diǎn)到角的兩邊的距離相等)
![](http://hiphotos.baidu.com/zhidao/pic/item/a2cc7cd98d1001e9a4f1fabebb0e7bec55e797b6.jpg)
(2)PC=PD.
過P點(diǎn)作PQ⊥OA于Q,PN⊥OB于N.
由(1)得 PQ=PN.
∵∠AOB=120°,
∴∠QPN=360°-90°-90°-120°=60°.
∴∠QPC=∠NPD=60°-∠CPN.
∴△PQC≌△PND.(ASA)
∴PC=PD.
(3)PC=PD.