∵M(jìn)P∥AB,NQ∥AB,∴MP∥NQ.
又NQ=
| ||
2 |
| ||
2 |
∴MN∥PQ,PQ?平面BCE.
而MN?平面BCE,
∴MN∥平面BCE.
證法二:過M作MG∥BC,交AB于點(diǎn)G(如圖),連接NG.
∵M(jìn)G∥BC,BC?平面BCE,
MG?平面BCE,
∴MG∥平面BCE.
又
BG |
GA |
CM |
MA |
BN |
NF |
∴GN∥AF∥BE,同樣可證明GN∥平面BCE.
又面MG∩NG=G,
∴平面MNG∥平面BCE.又MN?平面MNG.∴MN∥平面BCE.
| ||
2 |
| ||
2 |
BG |
GA |
CM |
MA |
BN |
NF |