A1>0,則易從遞推公式看出An>0
記sqrt()為開根號(hào),square root
A(n+1)-sqrt(2)=An/2+1/An-sqrt(2)
=(An^2-2sqrt(2)An+2)/(2An)
=(An-sqrt(2))^2/(2An)
前面給出了An>0的結(jié)論,還有當(dāng)An不等于sqrt(2)時(shí),(An-sqrt(2))^2>0,所以:
A(n+1)-sqrt(2)>0
即,類似于數(shù)學(xué)歸納法:
A1不等于sqrt(2),則A2>sqrt(2)
A2>sqrt(2),則A3>sqrt(2)
...
A(n)>sqrt(2),則A(n+1)=An/2+1/An>sqrt(2)
左邊不等式得證.
現(xiàn)在證明右邊不等式:
前面證明了An>sqrt(2),n>=2,則:
A(n+1)-sqrt(2)=(An-sqrt(2))^2/(2An)
=(1/2)*[1-(sqrt(2)/An)]*(An-sqrt(2))
由于An>sqrt(2),則1-(sqrt(2)/An)<1,所以:
A(n+1)-sqrt(2)<(1/2)*(An-sqrt(2)) ,n>=2
從而有:
A(n+1)-sqrt(2)<(1/(2^(n-1)))*(A2-sqrt(2))
->A(n+1)
A(n+1)
A(n+1)