2
| ||
x |
∴f(x)的定義域?yàn)閧x|x>0},
f′(x)=
a |
x |
2a2 |
x2 |
∵曲線y=f(x)在點(diǎn)(1,f(1))處的切線l的斜率為2-3a,
∴f′(1)=a-2a2=2-3a,
解得a=1.
(2)f′(x)=
a |
x |
2a2 |
x2 |
a(x?2a) |
x2 |
①當(dāng)a<0時(shí),∵x>0,∴x-2a>0,a(x-2a)<0,
∴f′(x)<0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
②當(dāng)a>0時(shí),若0<x<2a,則a(x-2a)<0,f′(x)<0,
函數(shù)f(x)在(0,2a)上單調(diào)遞減;
若x>2a,則a(x-2a)>0,f′(x)>0,函數(shù)在(2a,+∞)上單調(diào)遞增.
綜上所述,當(dāng)a<0時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)a>0時(shí),函數(shù)f(x)在(0,2a)上單調(diào)遞減,在(2a,+∞)上單調(diào)遞增.
(3)由(1)知,f(x)=lnx+
2 |
x |
設(shè)g(x)=f(x)-(3-x),則g(x)=lnx+
2 |
x |
∴g′(x)=
1 |
x |
2 |
x2 |
x2+x?2 |
x2 |
(x?1)(x+2) |
x2 |
當(dāng)x變化時(shí),g′(x),g(x)的變化如下表:
x | (0,1) | 1 | (1,+∞) |
g′(x) | - | 0 | + |
g(x) | ↓ | 極小值 | ↑ |
從而也是g(x)的最小值點(diǎn),
∴g(x)≥g(1)=ln1+2+1-3=0,
∴g(x)=f(x)-(3-x)≥0,
∴對于定義域內(nèi)的任意一個(gè)x,都有f(x)≥3-x.