方法一:
原式=>┐(┐P∨Q)∨R
=>(P∧┐Q)∨R
=>((P∧┐Q)∧(R∨┐R))∨(R∧(P∨┐P)∧(Q∨┐Q)))
=>(P∧┐Q∧R)∨(P∧┐Q┐R)∨((R∧P)∨(R∧┐P))∧(Q∨┐Q))
=>(P∧┐Q∧R)∨(P∧┐Q┐R)∨(R∧P∧Q)∨(R∧P∧┐Q)∨ (R∧┐P∧Q)∨(R∧┐P∧┐Q)
=>(P∧┐Q∧R)∨(P∧┐Q┐R)∨(P∧Q∧R)∨(P∧┐Q ∧R)∨ (┐P∧Q ∧R)∨(┐P∧┐Q∧R)(上式整理后)
=>m1∨m3∨m4∨m5∨m7 (上式整理后)
方法二:
原式=>┐(┐P∨Q)∨R
=>(P∧┐Q)∨R
=>(P∨R)∧(┐Q∨R)
=>((P∨R) ∨ (Q∧┐Q))∧((P∧┐P)∨(┐Q∨R))
=>(P∨Q∨R) ∧ (P∨┐Q∨R) ∧(P∨┐Q∨R) ∧(┐P∨┐Q∨R)
=>M0∧M2∧M6 (上式整理后得到主合取范式)
=>m1∨m3∨m4∨m5∨m7 (根據(jù)主合取范式與主析取范式的互補(bǔ)性,由上式直接得到主析取范式)
用等值演算求(P→Q)→R的主析取范式
用等值演算求(P→Q)→R的主析取范式
數(shù)學(xué)人氣:390 ℃時(shí)間:2020-03-26 05:37:48
優(yōu)質(zhì)解答
我來(lái)回答
類(lèi)似推薦
- A=(p→(q→r))↔ (r→(q→p))的主析取范式和主合取范式
- 求P∨( P→(Q∨(Q→R)))主合取與主析取范式
- 離散數(shù)學(xué): p∧q∧r是主析取范式嗎 p∨q∨r是主合取范式嗎 請(qǐng)說(shuō)明為什么?
- ┐(┐R→P)∧P∧Q如何求主合取范式與主析取范式,
- 離散數(shù)學(xué)求公式(┐P∨Q)∧(P→R)的主析取范式和主合取范式 急
- 多項(xiàng)式
- 描寫(xiě)樹(shù)的形容詞(可以是描寫(xiě)它的品質(zhì) 精神 也可以是樣子)
- 在動(dòng)物體內(nèi)糖原和脂肪都是儲(chǔ)能物質(zhì),但為什么是脂肪作為主要的儲(chǔ)能物質(zhì)呢?
- 0.3比0.45比0.1 4比6比16
- 在某塔塔底所在平面上一點(diǎn)仰角為a,由此點(diǎn)向塔直走30米后,測(cè)得仰角為2a,再沿直線(xiàn)走15(根號(hào)3—1)米后,又
- 12和20這兩個(gè)數(shù)的最大公因數(shù)是,最小公倍數(shù)是
- 如圖,在△ABC中,AC=BC,D是BC上的一點(diǎn),且滿(mǎn)足∠BAD=1/2∠C,以AD為直徑的⊙O與AB、AC分別相交于點(diǎn)E、F. (1)求證:直線(xiàn)BC是⊙O的切線(xiàn);(2)連接EF,若tan∠AEF=4/3,AD=4,求BD的長(zhǎng).
猜你喜歡
- 1已知a小于0,負(fù)b大于0,且負(fù)b的絕對(duì)值小于a的絕對(duì)值,c是負(fù)b的相反數(shù),試比較a,負(fù)b,c的大小,并用小于號(hào)連接.
- 2your performance是什么意思?
- 3英語(yǔ)同義句I spend an hour reading English every day
- 4青蛙是怎樣發(fā)聲的?
- 5錯(cuò)在課外閱讀 作文 按要求寫(xiě)句子
- 6已知向量a=(sinωx+cosωx,sinωx),向量b=(sinωx-cosωx,2√3cosωx)
- 7六(2)班第一次數(shù)學(xué)測(cè)試,及格的有48人,不及格的有2人.則這次數(shù)學(xué)測(cè)試的及格率為_(kāi).
- 8甲乙丙丁4個(gè)數(shù)都能不是0,甲除乙是0.5,丁除乙是1.1,丙除0.4等于乙,甲除1.25等于丙,比較甲乙丙丁大小
- 9如圖,已知空間四邊形ABCD,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且BG/GC=DH/HC=2,求證:EG,F(xiàn)H,AC相交于同一點(diǎn)P.
- 10How are you feeling now? I'm feeling even ____.
- 11為了鼓勵(lì)人們節(jié)約用水,思源市今年四月份頒布了居民用水收費(fèi)新標(biāo)準(zhǔn),具體收費(fèi)標(biāo)準(zhǔn)如下:
- 12家里人都在看電視,只有我一人在寫(xiě)作業(yè).(修改病句)