(1)由f(x)=ax
2+bx+c得到f'(x)=2ax+b.
因?yàn)榍€y=f(x)通過(guò)點(diǎn)(0,2a+3),故f(0)=c=2a+3,
又曲線y=f(x)在(-1,f(-1))處的切線垂直于y軸,故f'(-1)=0,
即-2a+b=0,因此b=2a.
(2)由(1)得bc=2a(2a+3)=4(a+
)
2-
,
故當(dāng)a=-
時(shí),bc取得最小值-
.
此時(shí)有b=-
,c=
.
從而f(x)=-
x
2-
x+
,f′(x)=-
x-
,g(x)=-f(x)e
x=(
x
2+
x-
)e
x,
所以g′(x)=-f′(x)e
x+(-f(x))e
x=
(x
2+4x)e
x
令g'(x)=0,解得x
1=0,x
2=-4.
當(dāng)x∈(-∞,-4)時(shí),g'(x)>0,故g(x)在x∈(-∞,-4)上為增函數(shù);
當(dāng)x∈(-4,0)時(shí),g'(x)<0,故g(x)在x∈(-4,0)上為減函數(shù).
當(dāng)x∈(0,+∞)時(shí),g'(x)>0,故g(x)在x∈(0,+∞)上為增函數(shù).
由此可見(jiàn),函數(shù)g(x)的單調(diào)遞增區(qū)間為(-∞,-4)和(0,+∞);單調(diào)遞增區(qū)間為(-4,0).