1 |
2 |
f′(x)=2x2-3+
1 |
x |
3 |
2 |
所以曲線y=f(x)在點(2,f(2))處的切線的斜率為
3 |
2 |
(2)f′(x)=ax2-(a+1)+
1 |
x |
令f′(x)=0,解得x=1,或x=
1 |
a |
因為a>0,x>0.
①當(dāng)0<a<1時,
若x∈(0,1)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
若x∈(1,
1 |
a |
若x∈(
1 |
a |
②當(dāng)a=1時,
若x∈(0,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
③當(dāng)a>1時,
若x∈(0,
1 |
a |
若x∈(
1 |
a |
若x∈(1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增.