(2)假設(shè)當(dāng)n=k(k∈N*,k≥1)時(shí),f(k)=32k+2-8k-9能被64整除.
當(dāng)n=k+1時(shí),由于32(k+1)+2-8(k+1)-9
=9(32k+2-8k-9)+9?8k+9?9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),
即f(k+1)=9f(k)+64(k+1),∴n=k+1時(shí)命題也成立.
根據(jù)(1)、(2)可知,對(duì)于任意n∈N*,命題都成立.
證法二:32n+2-8n-9=9(8+1)n-8n-9
=9(8n+
C | 1n |
C | n?1n |
C | nn |
=9(8n+
C | 1n |
C | n?2n |
∵各項(xiàng)均能被64整除,
∴32n+2-8n-9能被64整除.