精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 多元復合函數(shù)f(x,y)具有連續(xù)導數(shù),且f(1,1)=1,fx(1,1)=2 即f對x的偏導 fy(1,1)=3 令G(x)=f(x,f(x,x))

    多元復合函數(shù)f(x,y)具有連續(xù)導數(shù),且f(1,1)=1,fx(1,1)=2 即f對x的偏導 fy(1,1)=3 令G(x)=f(x,f(x,x))
    求G(1)與G’(1) 最好有過程,.
    數(shù)學人氣:609 ℃時間:2020-04-24 06:15:57
    優(yōu)質解答
    G(1)=f(1,f(1,1))=f(1,1)=1
    G’(1)=f’1(x,f(x,x))+f’2(x,f(x,x))(f’1(x,x)+f’2(x,x))=2+3(2+3)=17
    f’1(x,y)意思是對x求偏導~,f’2(x,y)是對y求偏導
    答案就是這個我昨天剛看完那個在對f這個復合函數(shù)求f2的時候該如何處理f(x,f(x,x))中的復合關系呢??這個你就把x=1代入就全解決了啊如果單獨有u=f(x,x)那么該如何求u的對x的偏導...也就是上面3*(2+3)怎么回事...fx(1,1)=2, fy(1,1)=3,看這個。。。這是最后一次追問的機會了,可我還不明白...百度Hi上詳說...謝謝你了,求解答呀...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版