∵直線x+2y+m=0(m∈R)與拋物線C:y2=x相交于不同的兩點(diǎn)A,B.
∴判別式△=4-4m>0,∴m<1,即實(shí)數(shù)m的取值范圍{m|m<1}.
(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0)
kpA=
y1?y0 |
x1?x0 |
kPB=
y2?y0 |
x2?x0 |
y1?y0 |
x1?x0 |
y2?y0 |
x2?x0 |
∴y12=x1,y22=x2,y02=x0
1 |
y1+y0 |
1 |
y2+y0 |
由(1)得:y0=1
y0=x0=1
所以存在P(1,1),使得對(duì)(1)中任意的m的值,都有直線PA與PB的斜率互為相反數(shù).