根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-log2x為定值,
設(shè)t=f(x)-log2x,則f(x)=t+log2x,
又由f(t)=3,可得t+log2t=3,
可解得t=2,故f(x)=2+log2x,
又因為f(x)與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,
所以g(x)=f-1(x)=2x-2,x∈R.
故答案為:g(x)=2x-2,x∈R
設(shè)定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若函數(shù)f(x)與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,則函數(shù)g(x)=_.
設(shè)定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若函數(shù)f(x)與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,則函數(shù)g(x)=______.
數(shù)學(xué)人氣:624 ℃時間:2020-10-01 04:23:56
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知定義域為(0,+∞)的單調(diào)函數(shù)f(x),若對任意的x∈(0,+∞)都有f(f(x)-log2x)=3,則滿足方程f(x)=2+/x的所有根之和為?
- 若函數(shù)f(2^x)的定義域是〔-1,1〕,則f(log2x)的定義域是
- 已知函數(shù)f(2^x)的定義域為[-1.1],則f(log2x)的定義域為
- 已知函數(shù)y=f(2^x)的定義域是|1,2|,求函數(shù)y=f(log2x)的定義域
- 已知函數(shù)y=f(2^x)的定義域是[-1,1],則函數(shù)y=f(log2x)的定義域是
- As we all know,numbers____in e-mail English to standnfor words.
- 在一根長931米的注滿水的鑄鐵水管的一端敲一下,在另一端聽到三次聲音,為什么?
- who do these books belong to?who does these book
- Singular Number,Plural Number,Regular Plural
- which team __yesterday's match,chinese or french?A was win Bwon C did won D winning
- 請教為什么在美國或中國登月的照片上,作為背景的太空沒有一顆星星?
- 在平面直角坐標系中,一動點P從原點O出發(fā)按下面規(guī)律進行移動,
猜你喜歡
- 1一根長314厘米的繩子在一根管子的外壁上恰好繞了十圈,如果這根管子的管壁厚為五毫米那么這根管子的橫截面
- 2薛譚學(xué)謳于秦青,未窮青之技,自謂盡之,遂辭歸.秦青弗止,踐行于郊外.
- 3干溫24.8 濕溫21 求相對濕度與空氣溫度?
- 4、粉刷62平方米的房間墻面,若每平方米需要涂料0.5升,在實際粉刷時要多用10%的涂料,粉刷完房間墻面要用
- 5姥姥的剪紙 課文 這篇課文的中心句是什么
- 6商店運來1800千克蘋果第一天賣掉中總數(shù)的百分之二十,第二天賣掉剩余的百分之三十五,還剩多少千克蘋果
- 7用兩種正多邊形拼地板,其中的一種是正八邊形,則另一種正多邊形的邊數(shù)是( ) A.正五邊形 B.正六邊形 C.正三角形 D.正四邊形
- 8一本書售價4元.如果樂樂買了這本書,則樂樂剩下的錢與天天的錢數(shù)之比為2:5;
- 9電容器335K代表什么意思
- 10已知X,Y大于0.(1除X)+(9除Y)=1,求X+Y的最小值
- 11m為非零有理數(shù),比較m,m分之1和負m的大小
- 12一道大學(xué)物理題,