∴f′(x)=
1-lnx |
x2 |
令f′(x)=0,解得x=e,
當(dāng)f′(x)>0,解得0<x<e,
當(dāng)f′(x)<0,解得x>e,
∴f(x)的單調(diào)遞增區(qū)間為(0,e);f(x)的單調(diào)遞減區(qū)間為(e,+∞).
(2)∵不等式lnx<mx對(duì)一切x∈[a,2a](其中a>0)都成立,
∴m>
lnx |
x |
∴下面即求f(x)=
lnx |
x |
∵a>0,由(1)知:f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.
當(dāng)2a≤e時(shí),即0<a≤
e |
2 |
ln2a |
2a |
當(dāng)a≥e時(shí),f(x)在[a,2a]上單調(diào)遞減,∴f(x)max=f(2a)=
lna |
a |
當(dāng)a<e<2a時(shí),即
e |
2 |
∴f(x)max=f(e)=
1 |
e |
綜上得:
當(dāng)0<a≤
e |
2 |
ln2a |
2a |
當(dāng)a≥e時(shí),m>
lna |
a |
當(dāng)
e |
2 |
1 |
e |