(A2)^3+A2-1=0…………(1)
(A2014)^3+A2014 +1=0
所以:
(-A2014)^3+(-A2014)-1=0…………(2)
因為:f(x)=x^3+x-1是R上的單調(diào)遞增函數(shù)
所以:f(x)=0在R上有唯一的零點,
因為:f(0)=-1<0,f(1)=1>0
所以:零點x=A2=-A2014∈(0,1)
所以:從(1)和(2)知道:
0
所以:d<0
A1+d=-(A1+2013d)=-A1-2013d
所以:2A1=-2014d
所以:A1=-1007d
1)S2015=2015A1+2015*2014d/2=2015(A1+1007d)=0,正確
2)A1008=A1+1007d=0,正確
3)d>0,錯誤
4)
S1007=1007A1+1007*1006d/2=1007(A1+503d)=1007*(-504d)
S1008=1008A1+1008*1007d/2=1008(A1+504d)=1008*(-503d)
顯然,S1008≠S1007
錯誤
綜上所述,正確的是1)和2)