可知:方程ax2-3x+2=0的兩根為x1=1、x2=b.
利用韋達(dá)定理不難得出a=1,b=2.
由此知an=1+2(n-1)=2n-1,sn=n2…(6分)
(2)由(1)可得:bn=(2n-1)?2n∴Tn=b1+b2+…+bn=1?2+3?22+…+(2n-1)?2n①
2Tn=1?22+3?23+…+(2n-3)?2n+(2n-1)?2n+1②
由②-①得:Tn=-2(21+22+23+…+2n)+(2n-1)?2n+1+2=?2?
2(1?2n) |
1?2 |
2(1?2n) |
1?2 |