∴∠ACB=∠DFB,∠FDP=∠E
∵AB=AC(已知),
∴∠ACB=∠ABC,
∴∠ABC=∠DFB,
∴DF=DB;
又∵CE=BD(已知),
∴CE=DF;
又∵∠DPF=∠CPE,
∴△ECP≌△DFP,
∴PE=PD;
(2)∵CE=BD,AC=AB,CE:AC=1:5(已知),
∴BD:AB=1:5,
∵DF∥AC,
∴△BDF∽△BAC,
∴
BF |
BC |
BD |
BA |
1 |
5 |
∵BC=10,
∴BF=2,F(xiàn)C=8,
∵△DFP≌△ECP,
∴FP=PC,
∴PF=4,
則BP=BF+FP=6.