∴y=f(x)在點(diǎn)P(1,f(1))處的切線方程為:
y-f(1)=f′(1)(x-1),
即y-(a+b+6)=(3+2a+b)(x-1),
整理得y=(3+2a+b)x+3-a.
又∵y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,
∴
|
|
∴a=2,b=-4.
(2)由(1)知f(x)=x3+2x2-4x+5,
f'(x)=3x2+4x-4=(3x-2)(x+2),
令f'(x)=0,得x=
2 |
3 |
當(dāng)x變化時(shí),f(x),f'(x)的變化如下表:
⊙
x | ⊙-3 | ⊙(-3,-2) | ⊙-2 | ⊙(-2,
| ⊙
| ⊙(
| ⊙1 | ||||||
f'(x) | ⊙⊙ | + | ⊙⊙ | - | ⊙⊙ | + | ⊙|||||||
f(x) | ⊙8 | ⊙增 | ⊙極大值 | ⊙減 | ⊙極小值 | ⊙增 | ⊙4 |
2 |
3 |
95 |
27 |
又∵f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值為13.