∴
an+1 |
3n+1 |
an |
3n |
∴{bn}為首項(xiàng)與公差均為1的等差數(shù)列.
又由題設(shè)條件求得b1=1,故bn=n,
由此得
an |
3n |
∴an=n×3n.
(2)Sn=1×31+2×32+…+(n-1)×3n-1+n×3n,
3Sn=1×32+2×33+…+(n-1)×3n+n×3n+1,
兩式相減,得2Sn=n×3n+1-(31+32+…+3n),
解出Sn=(
n |
2 |
1 |
4 |
3 |
4 |
an |
3n |
an+1 |
3n+1 |
an |
3n |
an |
3n |
n |
2 |
1 |
4 |
3 |
4 |