精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 曲線y=xsinx在點(diǎn)(?π2,π2)處的切線與x軸、直線x=π所圍成的三角形的面積為(  ) A.π22 B.π2 C.2π2 D.12(2+π)2

    曲線y=xsinx在點(diǎn)(?
    π
    2
    ,
    π
    2
    )
    處的切線與x軸、直線x=π所圍成的三角形的面積為( ?。?br/>A.
    π2
    2

    B. π2
    C. 2π2
    D.
    1
    2
    (2+π)2
    數(shù)學(xué)人氣:761 ℃時(shí)間:2019-09-24 19:36:29
    優(yōu)質(zhì)解答
    求導(dǎo)數(shù)可得y′=sinx+xcosx,
    ∴x=-
    π
    2
    時(shí),f′(-
    π
    2
    )=-1
    ∴曲線f(x)=xsinx在x=-
    π
    2
    處的切線方程為y-
    π
    2
    =-(x+
    π
    2
    ),即x+y=0
    當(dāng)x=0時(shí),y=0.即切線與坐標(biāo)軸的交點(diǎn)為(0,0),
    ∴切線與x軸,直線x=1所圍成的三角形面積為:
    S=
    1
    2
    ×π×π=
    1
    2
    π2

    故選A.
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版