由f(0)≥1及f(1)≥1,可得:apq≥1,a(1-p)(1-q)≥1,
兩式相乘有a2p(1-p)q(1-q)≥1,即a2≥
1 |
p(1?p)q(1?q) |
又由基本不等式可得:p(1-p)q(1-q)≤
1 |
16 |
由于上式取等號(hào)當(dāng)且僅當(dāng)p=q=
1 |
2 |
故p(1-p)q(1-q)<
1 |
16 |
因此得到a2>16即a>4
所以函數(shù)f(x)=5x2-5x+1滿足題設(shè)的所有條件,
因此a的最小值為5.
故選D.
1 |
p(1?p)q(1?q) |
1 |
16 |
1 |
2 |
1 |
16 |