1 |
3 |
1 |
2 |
得f′(x)=x2-ax+a-1.
令f′(x)=0,解得x=1或x=a-1.
當a-1≤1,即a≤2時,f′(x)在(1,+∞)上大于0,函數(shù)f(x)在(1,+∞)上為增函數(shù),不合題意;
當a-1>1,即a>2時,f′(x)在(-∞,1)上大于0,函數(shù)f(x)在(-∞,1)上為增函數(shù),
f′(x)在(1,a-1)內小于0,函數(shù)f(x)在(1,a-1)內為減函數(shù),f′(x)在(a-1,+∞)內大于0,
函數(shù)f(x)在(a-1,+∞)上為增函數(shù).
依題意應有:
當x∈(1,4)時,f′(x)<0,
當x∈(6,+∞)時,f′(x)>0.
∴4≤a-1≤6,解得5≤a≤7.
∴a的取值范圍是[5,7].
故選:B.