若關(guān)于x的方程(3k-6)/(2 -x)=k+1(k≠-1)有正實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
若關(guān)于x的方程(3k-6)/(2 -x)=k+1(k≠-1)有正實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
這道題的答案是-1<k<8,k≠2.我需要詳細(xì)過程,謝謝
優(yōu)質(zhì)解答
(3k-6)/(2 -x)=k+1
2-x=(3k-6)/(k+1)
x=2-(3k-6)/(k+1)
因?yàn)閤有正實(shí)數(shù)解,所以x>0且x≠2
即:2-(3k-6)/(k+1)>0
2-(3k-6)/(k+1)≠2
解得:-10-----> -10 (-k+8)/(k+1)>0-1