(1)由于fn(1)=a1+a2+a3+...+an = n^2,又fn(-1)=-a1+a2-a3+.+an = n,兩式相加,有2*(a2+a4+a6+...an) = n^2+n; 兩式相減有2* (a1+a3+a5+...+a(n-1)) = n^2-n,由等差數(shù)列定義,a2=a1+d,a4=a3+d...,上面兩式相減有2 * (d*n/2) = n^2+n-(n^2-n) = 2n,有d=2.根據(jù)等差數(shù)列求和公式 a1+a2+...+an = [2*a1+d(n-1)]*n/2 = n^2,有a1=1.
既通項(xiàng)公式為an=a1+d(n-1)=1+2*(n-1)=2n-1
(2)fn(1/2)= 1/2 * 1 + 1/4 * 3 + 1/8 * 5 + ...+ 1/(2^n) * (2n-1)
由于每項(xiàng)均為正,故n增大時(shí)fn(1/2)值必然增大,故fn(1/2)>= f3(1/2)= 15/8 > 5/4.
易知f5(1/2)=83/32.而第7項(xiàng) :第6項(xiàng) = (13/128) :(11/64) = 13/22.且之后任意相鄰兩項(xiàng)之比均不大于13/22,并趨近于1/2.
故fn(1/2) = f5(1/2) + 11/64 + 13/128 + 15/256 + .< f5(1/2) + 11/64 + 11/64*(13/22) + 11/64*[(13/22)^2] + .
后面是一個(gè)無窮等比數(shù)列,Sn = (11/64 * 1) / [1- (13/22)] = 121/288.
于是fn(1/2) < f5(1/2) + 121/288 = 83/32 + 121/288 = 3.0138888...< 3.0139
但是在計(jì)算第8項(xiàng)的時(shí)候,本應(yīng)為15/256,但是我們即為 11/64 * 13/22 * 13/22 = 169/2816,我們將差額予以扣除,得fn(1/2) < 2.9959,證畢
{an}是等差數(shù)列,設(shè)fn(x)=a1x a2x^2 ...anx^n,n是正偶數(shù),且已知fn(1)=n^2,fn(-1)=n
{an}是等差數(shù)列,設(shè)fn(x)=a1x a2x^2 ...anx^n,n是正偶數(shù),且已知fn(1)=n^2,fn(-1)=n
(1)求數(shù)列{an}的通項(xiàng)公式
(2)證明5/4
(1)求數(shù)列{an}的通項(xiàng)公式
(2)證明5/4
數(shù)學(xué)人氣:773 ℃時(shí)間:2020-01-25 05:42:23
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知數(shù)列{an}和函數(shù)fn(x)=a1x+a2x^2+…+anx^n.當(dāng)n為正偶數(shù)時(shí),fn(-1)=n:已知數(shù)列{an}和函數(shù)fn(x)=-n
- 已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an組成等差數(shù)列,n為正偶數(shù)
- 數(shù)列{an}及fn(x)=a1x+a2x^2+…+anx^n,fn(-1)=n•(-1)^n,n=1,2,3…
- 已知數(shù)列{an}及fn(x)=a1x+a2x²+…+anx^n,fn(-1)=[(-1)^n]*n
- a(n)是等差數(shù)列,設(shè)f(x)=a(1)x+a(2)x^2+...+a(n)x^n,n是正偶數(shù),且已知fn(1)=n^2,fn(-1)=n
- 函數(shù)f(x)=sinx-cosx^2的最小值是?
- 英語翻譯
- I took my grandpa to the hospital this morning,_____ I missed the first class.
- So crazy
- 方差是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù)
- 函數(shù)y=f(x)與它反函數(shù)y=f^-1(x)怎么讀?
- These are photos of my families.Look at them 改錯(cuò)
猜你喜歡
- 1平面與平面重合,是否屬于平行一類?那重合的兩直線,也屬于平行一類的嗎?
- 2非洲每年因饑餓死亡的人數(shù)及現(xiàn)在饑餓人口數(shù)量拜托各位了 3Q
- 3decide to do sth.還=什么
- 4(7/8)o you think of london?B:5.____london is one of the liveliest cities
- 5啤酒可以托運(yùn)嗎
- 6邊長為2√6的等邊三角形的中心到一邊的距離為?
- 7please give your hand to help me
- 8已知2的X次方等于3的Y次方等于6的Z次方不等等于1,證明X分之一加Y分之一等于Z分之一.
- 9幫我做做?
- 10機(jī)械分析天平TG628A的使用說明書
- 11in winter ,we wear warm coats to protect our bodies_.
- 12( )was most importance to her ,she told me,was her family it this what as