精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)A為3階方陣,x1,x2,x3是A的三個不同特征值,對應(yīng)特征向量分別為a1,a2,a3,令b=a1+a2+a3.

    設(shè)A為3階方陣,x1,x2,x3是A的三個不同特征值,對應(yīng)特征向量分別為a1,a2,a3,令b=a1+a2+a3.
    證明b,Ab,A^2b線性無關(guān),若A^3b=3Ab-2A^2b,求A的特征值,并計算行列式A+E
    數(shù)學(xué)人氣:933 ℃時間:2020-04-15 19:58:02
    優(yōu)質(zhì)解答
    首先要注意a1,a2,a3線性無關(guān),然后 (b,Ab,A^2b)=(a1,a2,a3)*V,其中V=1 x1 x1^21 x2 x2^21 x3 x3^2是Vandermonde矩陣,由于x1,x2,x3互不相同,V非奇異,所以b,Ab,A^2b線性無關(guān).0=A^3b-(3Ab-2A^2b)=(x1^3+2x1^2-3x1)a1+(x2...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版