精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求通過圓x2+y2+2x-4y-5=0和直線2x+y+4=0的二個交點,且面積最小的圓的方程

    求通過圓x2+y2+2x-4y-5=0和直線2x+y+4=0的二個交點,且面積最小的圓的方程
    數(shù)學(xué)人氣:838 ℃時間:2019-08-21 17:58:55
    優(yōu)質(zhì)解答
    這個圓是以交點為直徑端點的圓.將 y=-2x-4 代入圓的方程得 x^2+(-2x-4)^2+2x-4(-2x-4)-5=0 ,化簡得 5x^2+26x+27=0 ,設(shè)兩交點為A(x1,y1),B(x2,y2),則 x1+x2=-26/5 ,x1*x2=27/5 ,所以,y1+y2=(-2x1-4)+(-2x2-4)=-2(...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版