已知三角形ABC的三邊長a,b,c滿足b+c≤2a,c+a≤2b,則(a+b)²/ab的取值范圍是?
最小值是a=b=c時(shí)候,得到最小值4
最大比較麻煩:
利用內(nèi)切圓切線長代換
令
a=x+y
b=y+z
c=z+x
x,y,z>0
設(shè)x+y+z=1
b+c≤2a
2z≤x+y
c+a≤2b
2x≤y+z
M=(a+b)²/ab
=(x+2y+z)²/(y(x+y+z)+xz)
=(1+y)²/(y+xz)
當(dāng)y固定時(shí),
x+z=1-y也固定
2z≤x+y
2x≤z+y
所以當(dāng)2/3>=y>1/3時(shí)候
xz>=(1/3)(-y+2/3)
M=(1+y)²/(y+xz)
<=(1+y)²/(y+(1/3)(-y+2/3))
=(3/2)(1+y)²/(y+1/3))
令y+1/3=t
1>=t>2/3
(3/2)(1+y)²/(y+1/3))
=(3/2)(t+2/3)²/t
=2+(3/2)[t+(4/9)(1/t)]
<=2+13/6
=25/6
當(dāng)1>=y>2/3時(shí)候
xz>=0
M=(1+y)²/(y+xz)
<=(1+y)²/y=2+y+1/y<=2+2/3+3/2=25/6
但是如果y=2/3則要求x,z之一為0,所以25/6是上限,但是取不到.
所以綜上,所求的范圍是:
[4,25/6)