精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 若f(x)是連續(xù)的奇函數(shù),試證明∫f(cost)dt=0(上限為nπ+π,下限為nπ)

    若f(x)是連續(xù)的奇函數(shù),試證明∫f(cost)dt=0(上限為nπ+π,下限為nπ)
    數(shù)學(xué)人氣:262 ℃時(shí)間:2020-02-04 21:23:51
    優(yōu)質(zhì)解答
    cost=u-sintdt=du
    ∫f(cost)dt= ±∫(cosnπ,cos( nπ+π) f(u)/√(1-u^2)du
    由于后面積分中,被積函數(shù)f(u)/√(1-u^2)是奇函數(shù),積分區(qū)間為1和-1構(gòu)成的對(duì)稱區(qū)間,故積分=0
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版