精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知向量A由(a1,a2,a3)線性表示且表達式唯一,證明a1,a2,a3線性無關(guān)

    已知向量A由(a1,a2,a3)線性表示且表達式唯一,證明a1,a2,a3線性無關(guān)
    數(shù)學人氣:552 ℃時間:2020-03-22 06:07:20
    優(yōu)質(zhì)解答
    用反證法
    若a1,a2,a3線性相關(guān),則存在不全為0的
    k1,k2,k3使得
    k1a1+k2a2+k3a3 = 0
    別外 存在唯一的一組p1,p2,p3使得
    p1a1+p2a2+p3a3 = A
    兩試相加有(k1+p1)a1+(k2+p2)a2+(k3+p3)a3=A
    由于k1,k2,k3中至少有一個不為0,這說明
    (k1+p1),(k2+p2),(k3+p3),中至少能找少一個與對應p1,p2,p3不等
    于是找到了A關(guān)于a1,a2,a3的兩個線性表示,與唯一性矛盾
    證畢
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版