∴an+1+3=2(an+3),a1+3=5
∴數(shù)列{an+3}是以5為首項,以2為公比的等比數(shù)列
∴an+3=5?2n?1
∴an=5?2n?1?3
(2)∵nan=5n?2n?1?3n
令Tn=1?20+2?21+…+n?2n?1
則2Tn=1?2+2?22+…+(n-1)?2n-1+n?2n
兩式相減可得,-Tn=1+2+22+…+2n-1-n?2n=
1?2n |
1?2 |
∴Tn=(n?1)?2n+1
∴Sn=5(n?1)?2n?
3n2+3n |
2 |
1?2n |
1?2 |
3n2+3n |
2 |