an+2-2an+1=2(an+1-2an),又bn=an+1-2an所以bn+1=2bn…①
已知S2=4a1+2,a1=1解得a2=5,b1=a2-2a1=3 …②
由①②得數(shù)列{bn}是首項(xiàng)為3,公比為2的等比數(shù)列,∴bn=3?2n-1.…(4分)
(2)∵bn=an+1-2an=3?2n-1.…
∵cn=
an |
2n |
∴cn+1-cn=
an+1 |
2n+1 |
an |
2n |
an+1?2an |
2n+1 |
3?2n?1 |
2n+1 |
3 |
4 |
又c1=
a1 |
2 |
1 |
2 |
故數(shù)列{cn}是首項(xiàng)為
1 |
2 |
3 |
4 |
∴cn=
3 |
4 |
1 |
4 |
(3)∵cn=
an |
2n |
又cn=
3 |
4 |
1 |
4 |
∴an=(3n-1)2n-2…(10分)
當(dāng)n≥2時(shí),Sn=4an-1+2=(3n-4)2n-1+2;
當(dāng)n=1時(shí)S1=a1=1也適合上式,
所以{an}的前n項(xiàng)為Sn=(3n-4)2n-1+2…(12分)