精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 在三角形ABC中,角C=90度,以AB上一點O為圓心,OA長為半徑的圓,與BC相切于點D,AC,AB分別交于點E,F

    在三角形ABC中,角C=90度,以AB上一點O為圓心,OA長為半徑的圓,與BC相切于點D,AC,AB分別交于點E,F
    (1)若AC=6,AB=10,求⊙O半徑;(2)連接OE,ED,DF,EF,若四邊形BDEF是平行四邊形,試判斷OFDE的形狀,說明理由.
    其他人氣:577 ℃時間:2019-10-23 05:09:51
    優(yōu)質解答
    (1)因為 角C=90度,OD⊥BC
    所以 OD//AC,
    OD/AC=OB/AB
    設 ⊙O半徑=r 即 OD=OA=OF=OE=r
    又 AC=6,AB=10 故:BC=10
    所以 r/6=(10-r)/10
    解得:r=15/4
    (2)若四邊形BDEF是平行四邊形,EF=BD=2CD,即BO=2AO
    所以 FO=FB=ED 又OF//ED,所以OFDE是平行四邊形
    由于OF=OE,所以OFDE是菱形.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版