由指數(shù)函數(shù)單調(diào)性可知,1/3≤f(x)≤3,
設(shè)t=f(x),則t∈[1/3,3],
g(x)=t²-2at+3,
①當(dāng)a≤1/3時,h(a)=g(1/3)= -(2a/3)+28/9;
②當(dāng)1/3③當(dāng)x≥3時,h(a)=g(3)= -6a+12.
∴{h(a)= -(2a/3)+28/9,(a≤1/3);h(a)= -a²+3,(1/32.∵f(x)=x²+bx+c為偶函數(shù),∴b=0,f(x)= x² +c,
又曲線y=f(x)過點(2,5),∴c=1,f(x)=x²+1.
g(x)=(x+a)f(x)=(x+a)(x²+1)=x³+ax²+x+1,
g′(x)=3x²+2ax+1,
(1)∵曲線y=g(x)有斜率為0的切線,
∴3x²+2ax+1=0有解,
故△=4a²-12≥0,得a≤-√3,或a≥√3,
即a的取值范圍是a≤-√3,或a≥√3.
(2)∵當(dāng)x= -1時,函數(shù)g(x)取得極值,
∴g′(-1)=0,即3×(-1)²+2a×(-1)+1=0,得a=2,
g(x)= x³+2x²+x+1,g′(x)=3x²+4x+1=(3x+1)(x+1),
∴當(dāng)x< -1時,g′(x)>0,g(x)為增函數(shù);
當(dāng)-1
∴當(dāng)x= -1時,g(x)取極大值g(-1)=1;
當(dāng)x= -1/3時,g(x)取極小值g(-1/3)= 23/27,
要使方程g(x)+b=0有三個不同的實數(shù)解,則23/27< -b<1,即 -1∴b的取值范圍是(-1,-23/27).
3.設(shè)F(x)=f(x)-g(x),x∈[a,b],
則F′(x)= f′(x)-g′(x),
由題意,F′(x)>0,
∴F(x)在[a,b]上為增函數(shù),
∴當(dāng)a