則y=(30-x)/(x+2),
因?yàn)閥>0, (30-x)/(x+2) > 0,
所以0<x<30.
設(shè)x+2=t,則x=t-2,2<t<32.
x+y= x+(30-x)/(x+2)
=t-2+(32-t)/t
=t-2+32/t-1
= t+32/t-3……利用基本不等式
≥2√(t•32/t)-3=8√2-3.
函數(shù)t+32/t在[0,4√2]上遞減,在[ 4√2,+∞)上遞增,
因?yàn)?<t<32,所以t=32時(shí),t+32/t最大,t+32/t-3<30.
∴x+y∈[8√2-3,30).
![](http://e.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=ff87cf0bf81986184112e7827add024b/b812c8fcc3cec3fdb09fed1fd688d43f87942732.jpg)