∴Sn=(1?a+2?a2+3?a3+…+n?an)lga.
∴aSn=(1?a2+2?a3+3?a4+…+n?an+1)lga.
以上兩式相減得(1-a)Sn=(a+a2+a3+…+an-n?an+1)lga=[
a(1?an) |
1?a |
∵a≠1,∴Sn=
alga |
(1?a)2 |
(Ⅱ)由bn<bn+1?nlga?an<(n+1)lga?an+1?lga?an[n-(n+1)a]<0,
∵an>0,
∴l(xiāng)ga[n(a-1)+a]>0.①
(1)若a>1,則lga>0,n(a-1)+a>0,故a>1時(shí),不等式①成立;
(2)若0<a<1,則lga<0,不等式①成立?n(a-1)+a<0,∴0<a<
n |
n+1 |
綜合(1)、(2)得a的取值范圍為a>1或0<a<
n |
n+1 |