∴a1=1,a2=1,且 Sn+1-Sn-2Sn+2Sn-1=0(n∈N*且n≥2),
即(Sn+1-Sn)-2(Sn-Sn-1)=0(n∈N*且n≥2),
∴an+1=2an(n∈N*且n≥2),故數(shù)列{an}從第2項(xiàng)起是以2為公比的等比數(shù)列.
數(shù)列{an}的通項(xiàng)公式為 an=
|
當(dāng)n=1時(shí),Sn =1.當(dāng)n≥2時(shí),Sn =1+
1×(1?2n?1) |
1?2 |
綜上可得 Sn =2n-1.
|
1×(1?2n?1) |
1?2 |