證明如下:任取0<x1<x2≤3,
則g(x1)?g(x2)=[f(x1)+
1 |
f(x1) |
1 |
f(x2) |
1 |
f(x1)f(x2) |
∵f(x)在(0,+∞)是增函數(shù),∴f(x1)-f(x2)<0.又f(x)>0,f(3)=1,
∴0<f(x1)<f(x2)≤f(3)=1,
∴0<f(x1)?f(x2)<1,
1 |
f(x1)f(x2) |
1 |
f(x1)f(x2) |
∴g(x1)-g(x2)>0,即g(x1)>g(x2)
由此可知,函數(shù)g(x)=f(x)+
1 |
f(x) |
1 |
f(x) |
1 |
f(x1) |
1 |
f(x2) |
1 |
f(x1)f(x2) |
1 |
f(x1)f(x2) |
1 |
f(x1)f(x2) |
1 |
f(x) |