![](http://hiphotos.baidu.com/zhidao/pic/item/bf096b63f6246b602fafa5f0e8f81a4c500fa294.jpg)
∵AO、BO的長分別是關(guān)于x的方程x2-(2k-1)x+4(k-1)=0的兩個(gè)根,
∴AO+OB=2k-1,AO?BO=4k-4,
∵菱形ABCD,
∴AB=AD=BC=CD=
1 |
4 |
由勾股定理得:AO2+OB2=AB2=25,
∴(AO+BO)2-2AO?BO=25,
∴(2k-1)2-2(4k-4)=25,
解得:k2-3k-4=0,
k1=4,k2=-1,
當(dāng)k=4時(shí),方程為x2-7x+12=0,
b2-4ac=49-48>0,AO?OB=7>0,AO+B0=12>0;
當(dāng)k=-1時(shí),方程為x2+3x-8=0,
b2-4ac=9+32>0,AO?OB=-8<0,不合題意舍去;
∴k的值是4.