求導(dǎo)得:y′=-3x2,故切線的斜率k=y′|x=t=-3t2,
所以切線方程為:y-(-t3+1)=-3t2(x-t),
令x=0,解得:y=2t3+1;令y=0,解得:x=
2t3+1 |
3t2 |
所以△AOB的面積S=
1 |
2 |
2t3+1 |
3t2 |
1 |
6 |
1 |
t |
設(shè)y=2t2+
1 |
t |
1 |
2t |
1 |
2t |
3 | 2t2?
| ||||
當(dāng)且僅當(dāng)2t2=
1 |
2t |
1 |
4 |
3 |
| ||
把t=
3 |
| ||
3
| |||
4 |
故答案為:
3
| |||
4 |
2t3+1 |
3t2 |
1 |
2 |
2t3+1 |
3t2 |
1 |
6 |
1 |
t |
1 |
t |
1 |
2t |
1 |
2t |
3 | 2t2?
| ||||
1 |
2t |
1 |
4 |
3 |
| ||
3 |
| ||
3
| |||
4 |
3
| |||
4 |