設(shè)圓錐軸截面為△PAB,PA=PB=1,〈APB=120度,底圓心O,則PO⊥底面圓平面,
設(shè)過頂點截面PAC,設(shè)M是AC的中點,連結(jié)OM,
∵PA=PC,
∴△PAC是等腰△,
∴PM⊥AC,
弦心距OM⊥AC,
PO=AP/2=1/2,
R=AO=√3/2,
設(shè)OM=x,
根據(jù)勾股定理,AM=√(OA^2-OM^2)=√(3/4-x^2)=(1/2)√(3-4x^2),
AC=2AM=√(3-4x^2),
PM=√(OP^2+OM^2)=√(1/4+x^2),
S△PAC=AC*PM/2
=(1/2)√(3-4x^2)*√(1/4+x^2)
=(1/4)√(3+8x^2-16x^4)
=(1/4)([-16(x^4-x^2/2+1/16)+4]
=(1/4)√[-16(x^2-1/4)^2+4]
∴當(dāng)x^2=1/4時,面積有最大值,為1/2,
即OM^2=1/4,即OM=1/2時,有最大截面積,
截面積為1/2.
故軸截面不是最大面積.
《ACB=90°,(半圓上圓周角是直角),
OM是中位線,BC=2OM=1,
AB=√3,
AC=√2,
PM=√(OP^2+OM^2)=√2/2,
∴S△PAC=(1/2)√2*√2/2)= 1/2.
![](http://h.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=e97434cdd109b3deebeaec6efc8f40b9/5243fbf2b21193130f446c1565380cd791238d14.jpg)