得
|
解得
|
∴y=x2+2x-3;
(2)∵y=x2+2x-3=(x+1)2-4
∴對(duì)稱軸x=-1,
又∵A,B關(guān)于對(duì)稱軸對(duì)稱,
∴連接BD與對(duì)稱軸的交點(diǎn)即為所求P點(diǎn).
過D作DF⊥x軸于F.將x=-2代入y=x2+2x-3,
則y=4-4-3=-3,
∴D(-2,-3)
∴DF=3,BF=1-(-2)=3
Rt△BDF中,BD=
32+32 |
2 |
∵PA=PB,
∴PA+PD=BD=3
2 |
故PA+PD的最小值為3
2 |
|
|
32+32 |
2 |
2 |
2 |