C | 1m |
C | 1n |
∵f(x)=(1+2x)m+(1+4x)n(m,n∈N*)的展開(kāi)式中含x項(xiàng)的系數(shù)為36,
∴m+2n=18,
∴f(x)=(1+2x)m+(1+4x)n展開(kāi)式中含x2的項(xiàng)的系數(shù)為t=
C | 2m |
C | 2n |
∵m+2n=18,
∴m=18-2n,
∴t=2(18-2n)2-2(18-2n)+8n2-8n=16n2-148n+612
=16(n2-
37 |
4 |
153 |
4 |
∴當(dāng)n=
37 |
8 |
∴n=5時(shí)t最小,即x2項(xiàng)的系數(shù)最小,最小值為272,此時(shí)n=5,m=8.