已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且.a(chǎn)2是a1、a4的等比中項(xiàng),n∈N*. (I)求數(shù)列{an}的通項(xiàng)公式an; (Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn記數(shù)列{1/Sn}的前n項(xiàng)和為Tn,求證:Tn<1.
已知數(shù)列{a
n}是公差不為0的等差數(shù)列,a
1=2,且.a(chǎn)
2是a
1、a
4的等比中項(xiàng),n∈N
*.
(I)求數(shù)列{a
n}的通項(xiàng)公式a
n;
(Ⅱ)若數(shù)列{a
n}的前n項(xiàng)和為S
n記數(shù)列
{}的前n項(xiàng)和為T
n,求證:T
n<1.
優(yōu)質(zhì)解答
(Ⅰ)設(shè)等差數(shù)列{a
n}的公差為d(d≠0),
由題意得
a22=a1a4,即
(a1+d)2=a1(a1+3d),
∴(2+d)
2=2(2+3d),解得 d=2,或d=0(舍),
∴a
n=a
1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得,
Sn=na1+d=2n+n(n?1)=n2+n,
∴
===
?,
∴
Tn=++…+=
(1?)+(?)+…+(?),
=
1?,
∵n∈N
*,∴T
n<1.
我來回答
類似推薦